Бэкмология – это практика всесторонней комплексной поддержки рационального поведения. В ее состав входят модели, свод знаний, сбалансированный инструментарий поддержки принятия и реализации решений и объединяющая их методология.

Бэкмология включает пособие «Создание решений для деловых проблем», которое описывает строгий, детализированный и очень человечный процесс решения неструктурированных деловых проблем, и пособие «Защита собственной психики» – полное руководство по приемам психологического воздействия (атака, давление, манипуляция, обман, блеф, зомбирование и др.) и техникам эффективной защиты от него. Также Бэкмология представлена методиками рациоконтроллинга и психоконтроллинга.


Те, у кого есть свой бизнес, могут начать знакомство с Бэкмологией с сессии «Улучшение продаж». Это честная профессиональная работа, ориентированная на результат.


пятница, 22 апреля 2011 г.

Строение клеток эукариот



Кого интересует, как устроена и функционирует животная клетка, обращайтесь. У нас имеется подробный материал на этот счет. Здесь же приводим краткую справку о строении клеток эукариот.




Плазматическая мембрана (плазмалемма)

В основе всех мембран клетки лежит двойной слой молекул липидов. Их гидрофобные «хвосты», состоящие из остатков молекул жирных кислот, обращены внутрь двойного слоя. Снаружи располагаются гидрофильные «головки», состоящие из остатка молекулы спирта глицерина. В состав мембран чаще всего входят фосфолипиды и гликолипиды (их молекулы наиболее полярны), а также жиры и жироподобные вещества (например, холестерин). Липиды являются основой мембраны, обеспечивают ее устойчивость и прочность, т.е. выполняют структурную (строительную) функцию. Эта функция возможна благодаря гидрофобности липидов.

К заряженным головкам липидов, с помощью электростатических взаимодействий прикрепляются белки. Мембранные белки выполняют структурные, каталитические и транспортные функции. В зависимости от расположения различают погруженные, периферические и пронизывающие белки. Погруженные белки слегка погружены в двойной слой липидов и являются ферментами, которые катализируют различные биохимические реакции. Периферические белки расположены на поверхности двойного слоя липидов. Они стабилизируют расположение погруженных белков-ферментов. Пронизывающие белки пронизывают мембрану насквозь и выполняют транспортные функции.

На наружной поверхности мембраны расположены молекулы углеводов (олигосахариды), которые выполняют рецепторные функции. Олигосахариды воспринимают факторы внешней среды клетки и обеспечивают ее реакцию, изменяют проницаемость мембраны, обеспечивают «распознавание» клеток одного типа и соединение их в ткани. Совокупность олигосахаридов на поверхности животной клетки называется гликокаликсом.

Функции плазматической мембраны

  1. Барьерная функция. Мембрана ограничивает проникновение в клетку чужеродных, токсичных веществ.
  2. Регуляторная. Олигосахариды, располагающиеся на поверхности плазматической мембраны выполняют роль рецепторов, воспринимающих действие различных веществ и изменяющих проницаемость мембраны.
  3. Каталитическая. На поверхности мембран располагаются многочисленные ферменты, катализирующие биохимические реакции.
  4. Мембранный транспорт. Различают несколько видов мембранного транспорта.

А). Транспорт крупных молекул органических веществ, бактерий и вирусов путем эндоцитоза (проникновение в клетку) или экзоцитоза (выведение из клетки). Эндоцитоз - это поглощение веществ путем окружения их выростами плазматической мембраны. При этом различают фагоцитоз (поглощение твердых веществ) и пиноцитоз (поглощение жидкости). Фагоцитоз характерен для одноклеточных организмов и для фагоцитов многоклеточных, которые таким путем обеспечивают уничтожение инородных частиц. Пиноцитоз характерен для одноклеточных организмов и для эпителиальных клеток кишечника. Экзоцитоз - выделение веществ из клетки - осуществляется в обратном порядке.

Б). Небольшие молекулы органических и неорганических веществ, ионы могут поступать в клетку путем пассивного транспорта (диффузии), если вещество перемещается из области высокой концентрации в область низкой концентрации. Пассивный транспорт осуществляется всегда без затрат энергии.

Различают 2 вида пассивного транспорта: обычную диффузию и облегченную диффузию.

Путем обычной диффузии перемещаются:

  1. жирорастворимые вещества - напрямую через мембрану
  2. гидрофильные мелкие молекулы (воды, углекислого газа) и ионы - через белковые поры, которые образованы пронизывающими белками

Облегченная диффузия осуществляется с помощью специальных белков-переносчиков. Таким образом переносятся крупные гидрофильные молекулы, например, глюкоза. Глюкоза соединяется с белком-переносчиком. Образуется комплекс, хорошо растворимый в мембране, что облегчает проникновение глюкозы в клетку. Скорость облегченной диффузии выше, чем у обычной диффузии.

В). Транспорт веществ через мембрану может осуществляться и путем активного транспорта. Активный транспорт осуществляется только с затратами энергии, так как происходит перемещение веществ из области низкой концентрации в область высокой концентрации. Наиболее изучен процесс переноса ионов натрия и калия с помощью калий-натриевого насоса.


Цитоплазма

Цитоплазма представляет собой внутреннее содержимое клетки и состоит из основного вещества (гиалоплазмы), органоидов и включений.

Гиалоплазма - жидкая (желеобразная) часть клетки, представляет собой раствор органических и неорганических веществ. Ее функции:

  1. По гиалоплазме перемещаются различные вещества (и-РНК, т-РНК, аминокислоты, АТФ и др).
  2. В гиалоплазме протекают разнообразные биохимические реакции.
  3. Гиалоплазма обеспечивает химическое взаимодействие всех клеточных структур и объединяет их в одно целое.
  4. В гиалоплазме откладываются разнообразные по химическому составу включения.

Включения - это непостоянные клеточные структуры, представляют собой отложения веществ, временно не участвующих в обмене веществ клетки. По химическому составу и по функциям включения могут быть различными.

Примеры включений:

  1. минеральные (например, кристаллы солей)
  2. трофические (гранулы белков, полисахаридов, капли липидов)
  3. витаминные
  4. пигментные ( например, гранулы пигмента в клетках сетчатки глаза) и др.

Органоиды - это постоянные клеточные структуры, выполняющие определенные функции. В зависимости от строения цитоплазматические органоиды разделяют на мембранные органоиды и немембранные органоиды.


Особенности строения и функций мембранных органоидов

Мембранные органоиды - полые структуры, стенки которых образованы одинарной или двойной мембраной.

  1. Органоиды, образованные одинарной мембраной: эндоплазматическая сеть, комплекс Гольджи, лизосомы, вакуоли. Эти органоиды имеют сходный химический состав мембран и образуют внутриклеточную систему синтеза и транспорта веществ.
  2. Двумембранные органоиды. Их стенки образованы двойной мембраной. Это – митохондрии (во всех!!! эукариотических клетках) и пластиды (только в клетках растений!!!).


Одномембранные органоиды

1.      Эндоплазматическая сеть (ЭПС)

ЭПС - это одномембранный органоид, состоящий из полостей и канальцев, соединенных между собой. Эндоплазматическая сеть структурно связана с ядром: от наружной мембраны ядра отходит мембрана, образующая стенки эндоплазматической сети. ЭПС бывает 2 видов: шероховатая (гранулярная) и гладкая (агранулярная). В любой клетке присутствуют оба вида ЭПС.

На мембранах шероховатой ЭПС располагаются многочисленные мелкие гранулы - рибосомы, специальные органоиды, с помощью которых синтезируются белки. Поэтому нетрудно догадаться, что на поверхности шероховатой ЭПС синтезируется белки, которые проникают внутрь шероховатой ЭПС и по ее полостям могут переместиться в любое место клетки.

Мембраны гладкой ЭПС лишены рибосом, но зато в ее мембранах встроены ферменты, осуществляющие синтез углеводов и липидов. После синтеза углеводы и липиды тоже могут перемещаться по мембранам ЭПС в любое место клетки Степень развития вида ЭПС зависит от специализации клетки. Например, в клетках, синтезирующих белковые гормоны, будет лучше развита гранулярная ЭПС, а в клетках , синтезирующих жироподобные вещества - агранулярная ЭПС.

Функции ЭПС:

  1. Синтез веществ. На шероховатой ЭПС синтезируются белки, а на гладкой - липиды и углеводы.
  2. Транспортная функция. По полостям ЭПС синтезированные вещества перемещаются в любое место клетки.


2. Комплекс Гольджи

Комплекс Гольджи (диктиосома) представляет собой стопку плоских мембранных мешочков, которые называются цистернами. Цистерны полностью изолированы друг от друга и не соединяются между собой. По краям от цистерн ответвляются многочисленные трубочки и пузырьки. От ЭПС время от времени отшнуровываются вакуоли (пузырьки) с синтезированными веществами, которые перемещаются к комплексу Гольджи и соединяются с ним. Вещества, синтезированные в ЭПС, усложняются и накапливаются в комплексе Гольджи.

Функции комплекса Гольджи

  1. В цистернах комплекса Гольджи происходит дальнейшее химическое преобразование и усложнение веществ, поступивших в него из ЭПС. Например, формируются вещества, необходимые для обновления мембраны клетки (гликопротеиды, гликолипиды), полисахариды.
  2. В комплексе Гольджи происходит накопление веществ и их временное «хранение»
  3. Образованные вещества «упаковываются» в пузырьки (в вакуоли) и в таком виде перемещаются по клетке.
  4. В комплексе Гольджи образуются лизосомы (сферические органоиды с расщепляющими ферментами).


3. Лизосомы («лизис» - распад, растворение)

Лизосомы - мелкие сферические органоиды, стенки которых образованы одинарной мембраной; содержат литические (расщепляющие) ферменты. Сначала лизосомы, отшнуровавшиеся от комплекса Гольджи, содержат неактивные ферменты. При определенных условиях их ферменты активизируются. При слиянии лизосомы с фагоцитозной или пиноцитозной вакуолью образуется пищеварительная вакуоль, в которой происходит внутриклеточное переваривание различных веществ.

Функции лизосом:

  1. Осуществляют расщепление веществ, поглощенных в результате фагоцитоза и пиноцитоза. Биополимеры расщепляются до мономеров, которые поступают в клетку и используются на ее нужды. Например, они могут быть использованы для синтеза новых органических веществ или могут подвергаться дальнейшему расщеплению для получения энергии.
  2. Разрушают старые, поврежденные, избыточные органоиды. Ращепление органоидов может происходить и во время голодания клетки.
  3. Осуществляют аутолиз (расщепление) клетки (рассасывание хвоста у головастиков, разжижение тканей в зоне воспаления, разрушение клеток хряща в процессе формирования костной ткани и др.).


4. Вакуоли

Вакуоли - сферические одномембранные органоиды, представляющие собой резервуары воды и растворенных в ней веществ. К вакуолям относятся: фагоцитозные и пиноцитозные вакуоли, пищеварительные вакуоли, пузырьки, отшнуровывающиеся от ЭПС и комплекса Гольджи. Вакуоли животной клетки - мелкие, многочисленные, но их объем не превышает 5% от всего объема клетки. Их основная функция - транспорт веществ по клетке, олсуществление взаимосвязи между органоидами.

В клетке растений на долю вакуолей приходится до 90% объема. В зрелой растительной клетки вакуоль одна, занимает центральное положение. Мембрана вакуоли растительной клетки - тонопласт, ее содержимое - клеточный сок. Функции вакуолей в растительной клетке: поддержание клеточной оболочки в напряжении, накопление различных веществ, в том числе отходов жизнедеятельности клетки. Вакуоли поставляют воду для процессов фотосинтеза.

В состав клеточного сока могут входить:

-         запасные вещества, которые могут использоваться самой клеткой (органические кислоты, аминокислоты, сахара, белки).
-         вещества, которые выводятся из обмена веществ клетки и накапливаются в вакуоли (фенолы, дубильные вещества, алкалоиды и др.)
-         фитогормоны, фитонциды,
-         пигменты (красящие вещества), которые придают клеточному соку пурпурный, красный, синий, фиолетовый цвет, а иногда желтый или кремовый. Именно пигменты клеточного сока окрашивают лепестки цветков, плоды, корнеплоды

Канальцево-вакуолярная система клетки (система транспорта и синтеза веществ)

ЭПС, комплекс Гольджи, лизосомы и вакуоли составляют единую канальцево-вакуолярную систему клетки. Все ее элементы имеют сходный химический состав мембран, поэтому возможно их взаимодействие. Все элементы КВС берут начало от ЭПС. От ЭПС отшнуровываются вакуоли, поступающие к комплексу Гольджи, от комплекса Гольджи отшнуровываются пузырьки, сливающиеся с мембраной клетки, лизосомы.

 Значение КВС:

  1. Мембраны КВС делят содержимое клетки на отдельные отсеки (компартменты), в которых протекают определенные процессы. Это делает возможным одновременное протекание в клетке различных процессов, иногда прямопротивоположных.
  2. В результате деятельности КВС происходит постоянное обновление мембраны клетки.


Двумембранные органоиды

Двумембранный органоид - это полая структура, стенки которой образованы двойной мембраной. Известно 2 вида двумембранных органоидов: митохондрии и пластиды. Митохондрии характерны для всех клеток эукариот, пластиды встречаются только в клетках растений. Митохондрии и пластиды являются компонентами энергетической системы клетки, так в результате их функционирования синтезируется АТФ.

1. Строение и функции митохондрий

Митохондрия – двумембранный полуавтономный органоид, осуществляющий синтез АТФ.
Форма митохондрий разнообразна, они могут быть палочковидными, нитевидными или шаровидными. Стенки митохондрий образованы двумя мембранами: внешней и внутренней. Внешняя мембрана - гладкая, а внутренняя образует многочисленные складки - кристы. Во внутренней мембране встроены многочисленные ферментные комплексы, которые осуществляют синтез АТФ.

Складчатость внутренней мембраны имеет большое значение. На складчатой поверхности может расположиться больше ферментных комплексов, чем на гладкой поверхности. Количество складок в митохондрии может изменяться в зависимости от потребности клеток в энергии.Если клетка нуждается в энергии, то число крист увеличивается. Соответственно увеличивается и число ферментных комплексов, расположенных на кристах. В результате будет образовано большее количество АТФ. Кроме того, в клетке может возрастать общее количество митохондрий. Если клетка не нуждается в большом количестве энергии, то количество митохондрий в клетке снижается и уменьшается количество крист внутри митохондрий.

Внутреннее пространство митохондрий заполнено бесструктурным однородным веществом (матриксом). В матриксе располагаются кольцевые молекулы ДНК, РНК и мелкие рибосомы (как у прокариот). В ДНК митохондрий записана информация о строении митохондриальных белков. РНК и рибосомы осуществляют их синтез. Рибосомы митохондрий мелкие, по строению они очень похожи на рибосомы бактерий.. Некоторые ученые считают, что митохондрии образовались из бактерий, проникших в эукариотическую клетку Возможно, это происходило на начальных этапах возникновения жизни.

Митохондрии называют полуавтономными органоидами. Это означает, что они зависят от клетки, но в то же время сохраняют некоторую самостоятельность. Так, например, митохондрии сами синтезируют собственные белки, в том числе и ферменты своих ферментных комплексов. Кроме того, митохондрии могут размножаться путем деления независимо от деления клетки.


2. Пластиды


В клетках растений есть особые двумембранные органоиды - пластиды. Различают 3 вида пластид: хлоропласты, хромопласты, лейкопласты.

Хлоропласты имеют оболочку из 2 мембран. Наружная оболочка гладкая, а внутренняя образует многочисленные пузырьки (тилакоиды). Стопка тилакоидов - грана. Граны располагаются в шахматном порядке для лучшего проникновения солнечного света. В мембранах тилакоидов встроены молекулы зеленого пигмента хлорофилла, поэтому хлоропласты имеют зеленый цвет. С помощью хлорофилла осуществляется фотосинтез. Таким образом, главная функция хлоропластов - осуществление процесса фотосинтеза.

Пространство между гранами заполнено матриксом. В матриксе находятся ДНК, РНК, рибосомы (мелкие, как у прокариот), капли липидов, зерна крахмала.
 Хлоропласты, так же как и митохондрии, являются полуавтономными органоидами растительной клетки, так как могут самостоятельно синтезировать собственные белки и способны делиться независимо от деления клетки.

Хромопласты - пластиды, имеющие красную, оранжевую или желтую окраску. Окраску хромопластам придают пигменты каротиноиды, которые расположены в матриксе. Тилакоиды развиты слабо или вообще отсутствуют. Точная функция хромопластов неизвестна. Возможно, они привлекают к созревшим плодам животных.

Лейкопласты - бесцветные пластиды, расположены в клетках бесцветных тканей. Тилакоиды неразвиты. В лейкопластах накапливается крахмал, липиды и белки.

Пластиды могут взаимно превращаться друг в друга: лейкопласты - хлоропласты - хромопласты.


Особенности строения и функций немембранных органоидов

  1. Рибосома - немембранный органоид клетки, осуществляющий биосинтез белка. Состоит из двух субъединиц - малой и большой. Рибосома состоит из 3-4 молекул р-РНК, образующих ее каркас, и нескольких десятков молекул различных белков. Рибосомы синтезируются в ядрышке. В клетке рибосомы могут располагаться на поверхности гранулярной ЭПС или в гиалоплазме клетки в виде полисом. Полисома - это комплекс и-РНК и нескольких рибосом, считывающих с нее информацию. Функция рибосом - биосинтез белка. Если рибосомы располагаются на ЭПС, то синтезируемые ими белки используются на нужды всего организма, рибосомы гиалоплазмы синтезируют белки на нужды самой клетки.   Рибосомы прокариотических клеток мельче, чем рибосомы эукариот. Такие же мелкие рибосомы находятся в митохондриях и пластидах.
  2. Микронити - нити сократимого белка актина или миозина, расположенные в поверхностном слое гиалоплазмы, непосредственно под плазматической мембраной. Способны к сокращению, в результате происходит перемещение гиалоплазмы, впячивание или выпячивание клеточной мембраны, образование перетяжки во время деления клетки.
  3. Микротрубочки - полые цилиндрические структуры клетки, состоящие из несократимого белка тубулина. Микротрубочки не способны к сокращению. Стенки микротрубочки образованы 13 нитями белка тубулина. Микротрубочки располагаются в толще гиалоплазмы клеток. Функции микротрубочек:
  4. создают эластичный и довольно прочный клеточный каркас, который поддерживает форму клетки.
  5. образуют веретено деления клетки и таким образом участвуют в распределении хромосом при митозе и мейозе
  6. обеспечивают передвижение органоидов
  7. входят в состав ресничек, жгутиков, клеточного центра.
  8. Центриоли - цилиндрическая структура, стенки которой образованы 9 триплетами микротрубочек. Центриоли расположены парами перпендикулярно друг другу. В области центриолей образуются микротрубочек веретена деления. Совокупность центриолей и микротрубочек веретена деления называют клеточным центром.
  9. Реснички и жгутики - органоиды движения. Главная функция - передвижение клеток или перемещение вдоль клеток окружающей их жидкости или частиц. В многоклеточном организме реснички характерны для эпителия дыхательных путей, маточных труб, а жгутики - для сперматозоидов. Реснички и жгутики отличаются только размерами - жгутики более длинные. В их основе - микротрубочки, расположенные по системе 9(2) + 2. Это значит, что 9 двойных микротрубочек (дуплетов) образуют стенку цилиндра, в центре которого располагаются 2 одиночные микротрубочки. Опорой ресничек и жгутиков являются базальные тельца. Базальное тельце имееет цилиндрическую форму, образовано 9 тройками (триплетами) микротрубочек, в центре базального тельца микротрубочек нет.

Микронити, микротрубочки, центриоли, а в некоторых клетках - реснички и жгутики с базальными тельцами образуют опорно-двигательную систему клетки или цитоскелет. Цитоскелет пронизывает всю гиалоплазму, определяет форму клетки и ее изменение во время деления или перемещения некоторых клеток, обеспечивает перемещение органоидов в клетке.


ИНФОРМАЦИОННАЯ СИСТЕМА КЛЕТКИ

В состав информационной системы клетки входят: ядро, рибосомы и разнообразные органические молекулы (и-РНК, белки-ферменты, АТФ и др.) Информационная система клетки обеспечивает хранение, воспроизводство и реализацию генетической информации, заключенной в ДНК.

Генетическая информация - это информация о свойствах организма, которая передается по наследству. Поскольку все свойства организмов зависят от разнообразных белков, то генетическая информация содержит сведения о строении белков. Генетическая информация записана в ДНК различными последовательностями ее нуклеотидов.

Место хранения генетической информации - ядро. Там же происходит ее воспроизводство путем удвоения ДНК.

Реализация генетической информации осуществляется в цитоплазме в процессе биосинтеза белка с помощью рибосом. Перенос информации из ядра в цитоплазму осуществляется молекулами и-РНК.

Информационная система функционирует только в периодах между делениями клетки. Во время деления ядро распадается, ДНК суперспирализуется, считывание генетической информации становится невозможным и биосинтез белка прекращается.


СТРОЕНИЕ И ФУНКЦИИ ЯДРА

Ядро - важнейшая составная часть эукариотической клетки. Ядро не является органоидом клетки, так как во время деления клетки распадается.

Функции ядра:

  1. хранение генетической информации и ее воспроизводство
  2. управление жизнедеятельностью клетки путем реализации генетической информации, заключенной в ДНК.

В строении ядра различают 4 основных компонента:

-         ядерная оболочка (кариолемма)
-         ядерный сок (кариоплазма, кариолимфа, нуклеплазма)
-         ядрышко
-         хроматин.

Оформленное ядро присутствует в клетке только в периоде между ее делениями (в интерфазе). Во время деления клетки оболочка ядра распадается, исчезает ядрышко, а хроматин спирализуется и преобразуется в хромосомы.

Ядерная оболочка состоит из 2 близко расположенных мембран - наружной и внутренней. Между ними находится пространство. Наружная мембрана переходит в мембрану эндоплазматической сети, к ней могут быть прикреплены рибосомы. Через определенное расстояние обе мембраны сливаются друг с другом, образуя отверстия - ядерные поры. Число пор может изменяться в зависимости от активности ядра.

Функции ядерной оболочки:

  1. Защитная. Защищает генетический материал от различных отрицательных воздействий.
  2. Обеспечивает локализацию (размещение) генетического материала в определенном месте клетки.
  3. Через поры ядра происходит обмен веществами между ядром и цитоплазмой. В ядро поступают белки-гистоны и рибосомные белки, синтезирующиеся в цитоплазме. Из ядра в цитоплазму перемещаются и-РНК, т-РНК, субъединицы рибосом.
  4. Ядерная оболочка обеспечивает определенную реакцию среды внутри ядра, что необходимо для его нормального функционирования
  5. Структурная. Ядерная оболочка придает ядру определенную форму

В кариоплазме ядра располагается хроматин. Хроматин является нуклеопротеидом, так как состоит из ДНК (75%) и белков (25%). Участки ДНК обвивают группы из 8 молекул белков, в результате ДНК конденсируется (укорачивается) и становится более компактной. Степень конденсации хроматина в разных участках ядра различна. В связи с этим различают гетерохроматин и эухроматин.

Эухроматин выглядит как сеть из тонких нитей. Эухроматин генетически активен, генетическая информация ДНК копируется на молекулы РНК (процесс транскрипции), переносится в цитоплазму, где на ее основе синтезируются различные белки.

Гетерохроматин находится в более конденсированном состоянии, поэтому генетически неактивен (в его состав входит неинформативная ДНК), генетическая информация не реализуется.

Перед делением клетки хроматин спирализуется и конденсируется (уплотняется), образуются плотные Х-образные тельца - митотические хромосомы. Линейные размеры ДНК уменьшаются в 10 000 раз. К этому времени ядерная оболочка разрушается и митотические хромосомы свободно лежат в цитоплазме клетки.

Митотические хромосомы в начале деления состоят из двух хроматид. Каждая хроматида представляет собой суперспирализованную молекулу ДНК. Молекулы ДНК двух хроматид являются абсолютно одинаковыми молекулами, несут одинаковую генетическую информацию, так как образовались в результате удвоения одной материнской мо лекулы ДНК. Хроматиды соединены в области перетяжки - центромеры. Центромера делит каждую хроматиду на 2 плеча. У некоторых хромосом образуется дополнительная перетяжка - ядрышковый организатор. На его основе образуется ядрышко.

Во время деления клетки хромосомы тоже делятся. Каждая хромосома разделяется на 2 хроматиды, которые с этого момента являются самостоятельными хромосомами палочковидной формы.Таким образом, в начале деления клетки хромосомы представляют собой х-образные тельца (образованы двумя суперспирализованными молекулами ДНК), в конце деления - палочковидные тельца (образованы одной суперспирализованнной молекулой ДНК).

Во время интерфазы происходит удвоение молекулы ДНК, поэтому в начале деления, после конденсации хроматина, вновь образуется Х-образная хромосома из 2 хроматид.

Ядрышко - округлое, плотное тельце внутри ядра, мембраной не огранечено. Представляет собой скопление органических молекул и формирующихся субъединиц рибосом.

Ядрышко образуется в зоне ядрышкового организатора. Ядрышковый организатор - это определенный участок какой-либо хромосомы, в котором располагаются гены р-РНК. На их основе синтезируется р-РНК. Р-РНК соединяется с рибосомными белками, которые поступают в ядро из цитоплазмы через ядерные поры. Образуются рибонуклеопротеиды, из них формируются субъединицы рибосом. Таким образом, ядрышко - это место образования субъединиц рибосом.

Во время деления клетки хроматин конденсируется, прекращается синтез молекул р-РНК и ядрышко распадается.

Кариоплазма или ядерный сок - матрикс ядра, в котором располагаются ядрышко и хроматин. Представляет собой гелеобразное вещество, в его состав входят ферменты, рибосомные белки, белки-гистоны, нуклеотиды, продукты деятельности ядрышка и хроматина.

Функции кариоплазмы:

1. Связывает в единое целое все части ядра.
2. Через кариоплазму происходит транспорт различных веществ.


ХРОМОСОМНЫЕ НАБОРЫ

Хромосомный набор - совокупность хромосом клетки. Хромосомные наборы разных видов организмов могут отличаться числом хромосом, их размерами и формой. Совокупность количественных (число хромосом и размеры) и качественных (форма хромосом) признаков хромосомного набора называется кариотипом. Кариотип является постоянным для каждого вида и его особенности передаются по наследству.

Изучение хромосомных наборов позволило установить следующие факты:

  1. У организмов одного вида все клетки имеют одинаковые хромосомные наборы.
  2. В соматических клетках все хромосомы парные, поэтому хромосомные наборы называются диплоидными (2n). Хромосомы одной пары называются гомологичными. Они одинаковы по форме, размерам, набору генов. Одна из гомологичных хромосом является материнской, а другая - отцовской.
  3. В половых клетках содержится только какая-то одна хромосома из пары. Хромосомные наборы половых клеток называются гаплоидными (n).
  4. В хромосомном наборе различают аутосомы и половые хромосомы. Аутосомы одинаковы у особей мужского и женского пола. Половые хромосомы содержат гены, определяющие признаки пола и различаются у самцов и самок. Половые хромосомы бывают двух видов: Х-хромосомы и У-хромосомы. У человека у особей женского пола в хромосомном наборе две Х-хромосомы, а у особей мужского пола - ХУ.
  5. Число хромосом в хромосомном наборе может быть одинаковым у разных видов (но кариотипы обязательно будут различаться!) Например, 48 хромосом имеют шимпанзе, таракан, перец. Поэтому можно сделать вывод, что число хромосом не говорит о видовой принадлежности и не указывает на эволюционное родство видов.
  6. Число хромосом не зависит от уровня организации вида. Например, в хромосомном наборе сазана 104 хромосомы, а у человека - 46 хромосом.


РАЗЛИЧИЯ РАСТИТЕЛЬНОЙ И ЖИВОТНОЙ КЛЕТОК

В строении и функционировании животной и растительных клеток имеются как общие черты, так и различия. Различия заключаются в следующем:

  1. У растительной клетки над клеточной мембраной располагается толстая и прочная клеточная оболочка из полисахаридов (целлюлоза, пектин, гемицеллюлоза). Молекулы целлюлозы в клеточной стенке располагаются параллельно друг другу и соединены между собой большим количеством водородных связей. Целлюлоза придает клеточной стенке прочность. Пространство между молекулами целлюлозы заполнено другими углеводами, имеющими рыхлую структуру. Благодаря им клеточная оболочка во время роста клеток может растягиваться. Клеточная оболочка имеет поры. Через них из клетки в клетку проходят тяжи цитоплазмы - плазмодесмы. Через плазмодесмы происходит обмен веществами между соседними клетками. У животных клеток клеточная оболочка и плазмодесмы отсутствуют. Клеточная мембрана покрыта очень тонким слоем углеводов, входящим в состав гликокаликса.
  2. В клетках растений есть особые двумембранные органоиды - пластиды. Различают 3 вида пластид: хлоропласты, хромопласты, лейкопласты.
  3. В клетках высших растений отсутствуют центриоли, а клеточный центр представлен только микротрубочками. В клетках низших растений, как и в клетках животных, центриоли имеются.
  4. Вакуоли в растительных клетках занимают до 90% их объема. В молодых клетках вакуоли мелкие и многочисленные. Затем они сливаются и образуется одна большая вакуоль. Вакуоль растительной клетки заполнена клеточным соком. Клеточный сок - это водный раствор сахаров, аминокислот, витаминов, пигментов, неорганических солей. Вакуоль выполняет несколько функций: придает упругость клетке, запасает органические вещества, в ней откладываются отбросы обмена веществ. В клетках животных вакуоли занимают небольщой объем (до 5 %). Это в основном сократительные, пищеварительные, фагоцитарные вакуоли.
  5. В растительных клетках углеводы запасаются в виде крахмала, а в животных клетках - в виде гликогена.
  6. По способу питания растения являются фотоавтотрофами, а животные - гетеротрофами.


СТРОЕНИЕ ПРОКАРИОТ

Прокариоты - организмы, клетки которых не имеют ограниченного мембраной ядра. Надцарство прокариот состоит из одного царства - царства Дробянок, к которому относятся бактерии и сине-зеленые водоросли Рассмотрим строение прокариот на примере бактерий.

  1. Бактерии имеют самые мелкие клетки - от 0,5 до 10 мкм. Для сравнения: средний размер животной клетки - 40 мкм.
  2. Бактериальная клетка покрыта снаружи плазматической мембраной типичного строения. Над мембраной у всех бактерий находится прочная клеточная стенка, выполняющая защитные функции.
  3. Клеточная стенка многих бактерий окружена слизистой капсулой из полисахаридов. Слизь хорошо удерживает воду, поэтому слизистая капсула защищает бактериальную клетку от высыхания. Толщина слизистой капсулы зависит от условий, в которых находится бактерия. Например, у почвенных бактерий слизистая капсула развита очень хорошо, а у водных бактерий отсутствует.
  4. У некоторых бактерий имеются органоиды движения - один или несколько жгутиков, которые закреплены с помощью базального тельца, расположенного под мембраной.
  5. Матрикс бактериальной клетки - гиалоплазма.
  6. У бактерий нет ограниченного мембраной ядра. Его заменяет кольцевая молекула ДНК (бактериальная «хромосома»), расположенная в центре бактериальной клетки. Место расположения ДНК называется нуклеоидом. ДНК прокариот не соединена с белками. Ядрышка нет. Настоящих хромосом нет.
  7. В бактериальной клетке отсутствуют эндоплазматическая сеть, комплекс Гольджи, митохондрии, пластиды и др. мембранные органоиды. Их функции выполняют мезосомы - внутренние впячивания мембраны клетки. У фотосинтезирующих бактерии образуются специальные мезосомы, в мембранах которых располагаются молекулы бактериального хлорофилла. Такие мезосомы осуществляют фотосинтез.
  8. Рибосомы бактерий более мелкие и по размерам совпадают с рибосомами митохондрий и пластид эукариот. Функции рибосом, как и у эукариот - синтез белка. Из-за высокой скорости размножения и роста бактерии нуждаются в большом количестве белка, поэтому рибосомы могут иногда составлять до 40% массы клетки.
  9. Органические вещества запасаются в виде крахмала или гликогена, иногда в виде жира.


КЛЕТОЧНАЯ ТЕОРИЯ


Клеточная теория - одно из наиболее важных биологических обобощений, согласно которому все организмы имеют клеточное строение.

Клеточная теория возникла в результате анализа огромного количества фактического материала, который был получен в течение 200 лет. Изучение клетки стало возможным после открытия микроскопа.

1665 г. - Роберт Гук при помощи примитивного светового микроскопа увидел на срезе пробки крошечные «ячейки», которые он назвал клетками.

1671 г. - Мальпиги, Грю, Фонтана подтвердили исследования Гука на других биологических объектах. Ученые указывают на наличие клеточных стенок.

1677 г. - Левенгук усовершенствовал микроскоп. Отшлифованные вручную линзы давали увеличение в 275 раз. С помощью своего микроскопа Левенгук открыл одноклеточных животных.

В 19 веке были созданы микроскопы с увеличением в 1200 раз, с хорошим, четким изображением без искажения. Были открыты протоплазма и ядро. Знания накапливались, совершенствовалась техника микроскопирования. Опираясь на имеющиеся данные и собственные исследования немецкий ботаник Матиас Шлейден и зоолог Теодор Шванн в 1839 году почти одновременно, независимо друг от друга, пришли к выводу, что клетка является элементарной единицей строения всех растительных и животных организмов. М.Шлейден и Т.Шванн сформулировали основные положения клеточной теории, которая впоследствии развивалась многими учеными. Ошибки Шлейдена и Шванна заключались в следующем:

  1. они считали, что клетка образуется из бесструктурного вещества
  2. главная роль в клетке принадлежит ее оболочке.

Ошибки Шлейдена и Шванна были устранены работами немецкого паталогоанатома Рудольфа Вирхова. В частности он утверждал, что новая клетка образуется только в результате деления материнской клетки.

В последующий период клеточная теория обогащалась новым содержанием в связи с дальнейшим развитием цитологии.

Основные положения современной клеточной теории.

1.      Все живые организмы состоят из клеток. Исключение - вирусы.
2.      Клетка - наименьшая единица живого. Вне клетки жизни нет.
3.      Клетки всех организмов сходны по строению и химическому составу.
4.      Новые клетки возникают только путем деления ранее существовавших клеток.
5.      Активность организма слагается из активности и взаимодействия составляющих его самостоятельных клеток.
6.      Клеточное строение всех организмов говорит о единстве их происхождения.

1 комментарий:

  1. Компактно и ясно изложено.Хотелось бы в таком же компактном варианте прочитать о биосинтезе белков.Благодарю!

    ОтветитьУдалить